24
Algebra
- Quadratic Formula:x=−b±b2−4ac2ax=2a−b±b2−4ac
- Slope of a Line:m=y2−y1x2−x1m=x2−x1y2−y1
- Point-Slope Form:y−y1=m(x−x1)y−y1=m(x−x1)
- Distance Formula:d=(x2−x1)2+(y2−y1)2d=(x2−x1)2+(y2−y1)2
Geometry
- Area of a Circle:A=πr2A=πr2
- Circumference of a Circle:C=2πrC=2πr
- Pythagorean Theorem:a2+b2=c2a2+b2=c2
- Area of a Triangle:A=12bhA=21bh
- Volume of a Sphere:V=43πr3V=34πr3
Trigonometry
- Basic Trigonometric Ratios:sinθ=oppositehypotenuse,cosθ=adjacenthypotenuse,tanθ=oppositeadjacentsinθ=hypotenuseopposite,cosθ=hypotenuseadjacent,tanθ=adjacentopposite
- Pythagorean Identity:sin2θ+cos2θ=1sin2θ+cos2θ=1
- Law of Sines:asinA=bsinB=csinCsinAa=sinBb=sinCc
- Law of Cosines:c2=a2+b2−2abcosCc2=a2+b2−2abcosC
Calculus
- Derivative Rules:ddx[xn]=nxn−1,ddx[ex]=ex,ddx[lnx]=1xdxd[xn]=nxn−1,dxd[ex]=ex,dxd[lnx]=x1
- Product Rule:ddx[uv]=u′v+uv′dxd[uv]=u′v+uv′
- Quotient Rule:ddx[uv]=u′v−uv′v2dxd[vu]=v2u′v−uv′
- Chain Rule:ddx[f(g(x))]=f′(g(x))⋅g′(x)dxd[f(g(x))]=f′(g(x))⋅g′(x)
- Definite Integral:∫abf(x) dx=F(b)−F(a)∫abf(x)dx=F(b)−F(a)
Statistics
- Mean:Mean=∑xinMean=n∑xi
- Variance:σ2=∑(xi−μ)2nσ2=n∑(xi−μ)2
- Standard Deviation:σ=σ2σ=σ2
DN Review
Click to rate this post!
[Total: 0 Average: 0]